Catch and release: how do kinetochores hook the right microtubules during mitosis?
نویسندگان
چکیده
Sport fishermen keep tension on their lines to prevent hooked fish from releasing. A molecular version of this angler's trick, operating at kinetochores, ensures accuracy during mitosis: the mitotic spindle attaches randomly to chromosomes and then correctly bioriented attachments are stabilized due to the tension exerted on them by opposing microtubules. Incorrect attachments, which lack tension, are unstable and release quickly, allowing another chance for biorientation. Stabilization of molecular interactions by tension also occurs in other physiological contexts, such as cell adhesion, motility, hemostasis, and tissue morphogenesis. Here, we review models for the stabilization of kinetochore attachments with an eye toward emerging models for other force-activated systems. Although attention in the mitosis field has focused mainly on one kinase-based mechanism, multiple mechanisms may act together to stabilize properly bioriented kinetochores and some principles governing other tension-sensitive systems may also apply to kinetochores.
منابع مشابه
Kinetochores Generate Microtubules with Distal Plus Ends: Their Roles and Limited Lifetime in Mitosis
In early mitosis, microtubules can be generated at kinetochores as well as at spindle poles. However, the role and regulation of kinetochore-derived microtubules have been unclear. In general, metaphase spindle microtubules are oriented such that their plus ends bind to kinetochores. However, we now have evidence that, during early mitosis in budding yeast, microtubules are generated at kinetoc...
متن کاملCaptivating Capture: How Microtubules Attach to Kinetochores
Accurate chromosome segregation is essential to ensure genomic stability because the aneuploidy that results from segregation errors leads to birth defects and contributes to the development of cancer. Chromosome segregation is directed by the kinetochore, the chromosomal site of attachment to dynamic polymers called microtubules (MTs). Although the fidelity of chromosome segregation depends on...
متن کاملKinetochore microtubule interaction during S phase in Saccharomyces cerevisiae.
In the budding yeast Saccharomyces cerevisiae, microtubule-organizing centers called spindle pole bodies (SPBs) are embedded in the nuclear envelope, which remains intact throughout the cell cycle (closed mitosis). Kinetochores are tethered to SPBs by microtubules during most of the cell cycle, including G1 and M phases; however, it has been a topic of debate whether microtubule interaction is ...
متن کاملComplications dawn for kinetochore regulation by Aurora.
O rganisms must faithfully segregate their chromosomes during cell division; mistakes in this process can be costly and even fatal to the organism (1, 2). During mitosis, replicated chromosomes attach to the spindle, a dynamic system of microtubules organized around two poles. Chromosomes attach to the spindle via kinetochores, structures that form on centromeres and bind the ends of microtubul...
متن کاملThe dynamic kinetochore-microtubule interface.
The kinetochore is a control module that both powers and regulates chromosome segregation in mitosis and meiosis. The kinetochore-microtubule interface is remarkably fluid, with the microtubules growing and shrinking at their point of attachment to the kinetochore. Furthermore, the kinetochore itself is highly dynamic, its makeup changing as cells enter mitosis and as it encounters microtubules...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in genetics : TIG
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2014